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Abstract 

W e submit that the safe operating space of the 
planetary boundary of novel entities is 

exceeded since annual production and releases are 
increasing at a pace that outstrips the global capacity 
for assessment and monitoring. The novel entities 

boundary in the planetary boundaries framework refers to entities 
that are novel in a geological sense and that could have large-scale 

impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying 
the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway 
from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria 
for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We 
propose several complementary control variables to capture the complexity of this boundary, while acknowledging 
major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the 
weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger 
volumes and higher numbers of novel entities with diverse risk potentials exceed societies’ ability to conduct safety 
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related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding 
the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many 
novel entities and/or their associated effects will continue to pose a threat. 

Synopsis 
Increasing production and emissions of Novel Entities outstrips capacities for assessment and monitoring resulting in 
transgression of their planetary boundary. 

Introduction 
As Chemical pollution has the potential to cause 

severe ecosystem and human health problems at 
different scales, (1) but also to alter vital Earth system 
processes on which human life depends. “Chemical 
pollution” was included as one of nine planetary 
boundaries, (2) in response to this understanding. 
Steffen et al. (3) renamed the “chemical pollution” 
boundary to “novel entities” (NE), defined as “new 
substances, new forms of existing substances and 
modified life forms”, including “chemicals and other new types of engineered materials or organisms not previously 
known to the Earth system as well as naturally occurring elements (for example, heavy metals) mobilised by 
anthropogenic activities”. Steffen et al. (3) argued that the anthropogenic introduction of novel entities to the 
environment is of concern at the global level when these entities exhibit persistence, mobility across scales with 
consequent widespread distribution and accumulation in organisms and the environment, and potential negative 
impacts on vital Earth System processes or subsystems. 

So far, no quantitative boundary has been defined for the novel entities boundary, although, some specific chemicals are 
quantified under other planetary boundaries, such as greenhouse gases and CFCs. Conditions where chemicals may 
pose a planetary threat have been specified, (4,5) and ways in which cascading systemic effects come to represent a 
planetary-scale problem have been explored, for example, for plastics (6) (mixtures of nonpolymeric and polymeric 
chemicals). The high costs to society associated with current use and environmental releases of novel entities (1,7−11) 
offer a strong additional arguments for pursuing prompt action addressing this complex planetary boundary. An 

investigation and assessment of the boundary can draw 
attention to global risks to humans and biota, and drive 
actions to mitigate them. As part of the planetary boundaries 
framework, a quantified boundary can also offer scientific 
underpinning (e.g., targets and indicators for developing 
action and effectiveness evaluation) in policy processes, such 
as the UN Strategic Approach to International Chemicals 

Management and its successor. (12) 

This paper reviews the evolution of the scientific discussion related to the planetary boundary for novel entities (NE-PB) 
since 2009 and discusses options for its quantification. We focus on chemical pollution, highlighting plastic pollution as 
a particular subset issue of high concern, and provide an assessment of the current status of this planetary boundary. 
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Chemicals at large, including plastics, have been identified as fulfilling the characteristics of a novel entity. (13,14) While 
both are similar in many regards, the differences between plastics and other chemicals provide opportunities for us to 
explore a wide range of impacts in defining new control variables for this planetary boundary. We conclude that 
increasing trends of production and emissions of diverse novel entities that outstrip our efforts at safety assessment and 
monitoring are a transgression of the planetary boundary and that immediate actions are needed to return us to the safe 
operating space. 

For the analysis, we follow the definition of NEs suggested by Steffen et al. (3) Novel means new in the geological sense, 
that is, created, introduced, or recirculated by humans. The entities are intentionally and unintentionally manufactured 
chemicals, engineered materials, and their transformation products, that have the potential to cause effects on vital Earth 
system processes (15) as well as naturally occurring elements and materials mobilised in new ways, new forms, or at 
substantially higher rates by anthropogenic activities. By Earth system processes we mean the biophysical processes that 
together determine the self-regulating capacity of the planet, (2) that is, the interacting physical, chemical, and biological 
processes on land, in the oceans, and in the atmosphere. This macro perspective ensures the NE-PB is conceptually 
aligned with the other planetary boundaries, and provides a necessary complement to the existing subglobal societal 
concerns framing ecological and human health as the direct end points of chemical pollution. 

The Planetary Boundary for Novel Entities 
Several studies have addressed the topic of a planetary boundary for chemical pollution and novel entities. One line of 

discussion has focused on what kinds of chemical substances should be considered, in terms of their systemic behaviour. 
Sala and Saouter (16) proposed that synthetic chemicals that degrade slowly and accumulate in the environment should 
be prioritised. Diamond et al. (4) argued that chemical pollution, in aggregate, poses a threat to the integrity of the 

global ecosystem and cautioned against delaying action to reduce pollution pressure 
while attempting to increase scientific certainty. As a first step, they recommended 
considering well-known chemicals such as persistent organic pollutants (POPs) and 
persistent, bioaccumulative and toxic (PBT) chemicals. Bernhardt et al. showed that 

the high rate of change in production and variety of synthetic chemicals over the last four decades outpaces many other 
drivers of change. (17) Perlinger et al. (18) proposed that “measurement and modelling of the fate and transport of 
harmful compounds that disseminate globally through repeated cycles of atmosphere–surface exchange should be 
incorporated into efforts to identify safe boundaries and integrate those boundaries into systems of governance”. 

Among novel entities, plastic pollution has been elevated to a potential NE-PB issue of high concern. (6,14,19) After 
several decades of mass production, plastics are now ubiquitous across the planet. (20,21) The whole production cycle 
of plastics carries climate impacts, (22−24) and plastics may also affect biodiversity through physical impacts, for 
example, via entanglement or ingestion, (25) adding to other large pressures on biodiversity. (26) The understanding of 
what is harmful or hazardous from a planetary perspective has thus expanded to include effects beyond toxicity as the 
current major focus of chemicals management. 

Another line of discussion focuses on downstream effects. For example, chemical footprint evaluation aims to assess the 
carrying capacity of receiving ecosystems to define the NE-PB in terms of total chemical inputs that can be absorbed 
without unacceptable negative impacts. (16,27−29) Even without boundary quantification, the concept of planetary 
boundary threats has been used to define chemical profiles for screening chemicals for unwanted environmental 
exposure profiles. (30) 
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A particularly challenging aspect for NE-PB quantification is the potential for known and unknown novel entities to 
cause so far unknown effects. (5,13) Environmental monitoring is targeted on known novel entities resulting in limited 
scanning for “unknown unknowns”. (31) 

An Impact Pathway and Criteria for a Control Variable 
The scientific rationale behind the planetary boundary concept is that Earth’s climate stability and ecosystem resilience, 

seen throughout ∼10 000 years of the Holocene, are the result of dynamic biophysical interactions that can now be 

radically altered by human activities. The further human activities push Earth away from Holocene-like conditions, the 
higher the risks of large-scale and irreversible change, because thresholds in Earth system processes are intrinsic features 
of the Earth system. (32,33) The planetary boundaries framework identifies “control variables”, such as CO2 
concentration, nitrogen fixation rate, and seawater aragonite saturation, that track both Earth system behaviour (i.e., 
Earth’s temperature, nutrient limitation, and ocean carbon sinks, respectively) and the perturbation that may provoke 
crossing of thresholds, which are linked to one or several control variables. A control variable is defined as a measurable 
parameter that is causally related to a specific boundary. The positions of the planetary boundaries are set at the lower 
end of the scientific uncertainty zone of “safe” Holocene-like conditions. (2) 

For novel entities introduced exclusively by humans (e.g., xenobiotic organic chemicals, plastics), by definition there is 
no “natural variability” against which a control variable can track change on human time scales, nor is there a 
biophysical precedent for identifying thresholds. Another complication is that the NE-PB has a wide range of possible 
end points (including affecting other PB processes). Different categories of NE impacts can be distinguished: (4) direct 
biological effects, such as decline in top predators following widespread DDT use, with subsequent cascading 
ecological effects; physical pathways such as albedo reduction from black carbon particles affecting climate; and 
chemical reactions that cannot be controlled postrelease, like the breakdown of ozone by CFCs on polar stratospheric 
clouds. 

Defining control variable(s) is key to operationalising a planetary boundary and assessing the Earth system’s position with 
respect to thresholds or tipping points. Control variables for the NE-PB must be based on a scientific understanding of 
the causal mechanisms that link NE introduction to disturbance of Earth system effects as presented in the impact 
pathway in Figure 1. Complex and diverse impact mechanisms mean that no single control variable can capture the full 
scope of the safe operating space for NEs and quantification in terms of trends (pressures) rather than system conditions 
may be more appropriate for taking a precautionary approach. 

The impact pathway approach opens a very large set of possibilities, so we define the following criteria to inform the 
selection of control variable options: 

Feasibility (F): Can it be measured? Data availability must permit quantification at relevant spatial and temporal scales 
and comparison with other biophysical monitoring data. 
Relevance (R): Can it be robustly linked to effects? It must be possible to link the control variable consistently to one or 
more effects that are known to influence Earth system functioning, i.e. establish a cause-effect link. 
Comprehensiveness (C): Does it capture the planetary scale of the problem? The control variable must indicate the 
totality of the potential impacts of novel entities, through cause-effect thresholds affecting a given Earth system process 
or through effects on one or more of the other PBs. 
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The ease of quantification (feasibility) is generally highest early in the impact pathway (to the left in Figure 1). For a 
control variable defined according to exposure or disturbance (to the right in Figure 1), there is robust knowledge of 
effects (relevance) for a limited number of novel entities but uncertainty rises because assumptions and parametrizations 
have to be made to quantify each step along the pathway. Comprehensiveness is higher earlier in the impact pathway, as 
the number of possible fates and effects increases from left to right, while the ability for current policies and actions to 
exert control over the impacts decreases from left to right along the pathway. 

Control Variables for the Planetary Boundary of Novel Entities 
Below we evaluate options for control variables guided by our criteria, proceeding from left to right along the NE-PB 

impact pathway (Figure 1). 

Production of Novel Entities 
Production of novel entities is rapidly increasing. The chemical industry is the second largest manufacturing industry 
globally. (1) Global production increased 50-fold since 1950, and is projected to triple again by 2050 compared to 
2010. (34) Material extraction as feed stocks for novel entities was approximately 92 billion tonnes globally in 2017, and 
is projected to reach 190 billion tonnes by 2060. (1) There are an estimated 350 000 chemicals (or mixtures of 
chemicals) on the global market. (35) Nearly 70 000 have been registered in the past decade; many chemicals (nearly 
30 000) have only been registered in emerging economies, where chemical production has increased rapidly, but 
chemicals management and disposal capacity often are limited. The production of intended chemicals entails the 
unintended production of byproducts, transformation products, and impurities which may not be considered under 
chemicals assessments and management measures. 

Here, we consider the control variables trend in production volumes of chemicals, trend in production volumes of 
plastics, and the share of chemicals on the market that are assessed for risk or safety (Table 1). 
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Figure 1. A generalised impact pathway for novel entities connecting production capacity, environmental release, fate, and 
distribution to perturbation of Earth system processes.



Table 1. NE-PB and Possible Control Variables

control variable 
criteria assessment a

control 
variable 
category

specific examples high low current state comments in relation to the 
boundary

trend in 
production 
of novel 
entities

production volume 
of chemicals

F R Global production increased 50-
fold since 1950, and will triple 
again by 2050 compared to 2010. 
(34) Growth in production 
projected to continue, e.g., sales 
expected to double 2017–2030 
(43)

Current growth in production has 
not been proven to be within the 
Safe-operating space. Challenge 
of control due to lock-in.C

production volume 
of plastics

F R Global production increased 79% 
from 2000 to 2015. (37) 
Cumulative global production is 
projected to triple by 2050 (44,45)

Current growth in production has 
not been proven to be within the 
Safe-operating space. Challenge 
of control due to lock-in.C

share of chemicals 
available on the 
market that have 
safety data or 
regulatory 
assessment

R F Only a fraction of chemicals in 
current use have been assessed for 
risk or safety.

The higher the number of 
substances on the market that 
have not been assessed for safety 
or risk, the higher the risk of NE-
PB threats.C

trend in 
release of 
novel 
entities

emission quantities 
of hazardous 
chemicals

R F Primary data on emissions 
available for very few NEs in very 
few countries. The trend is 
increasing emissions in spite of 
improved emission controls for a 
limited number of substances.

Current growth in emissions has 
not been proven to be within the 
Safe-operating space.

C

release quantities 
of plastics into the 
environment

R F 3.8% increase in release volumes 
between 2014 and 2015 (37,46)

The boundary is being 
transgressed by the current 
increase in release volumes.

C

unwanted 
impact of 
novel 
entities on 
earth 
system 
processes

toxicity of chemical 
pollution

R F Metolachlor (pesticide) and 
Bisphenol A for the freshwater 
compartment in Europe, together 
these two substances alone occupy 
around 1000th of the safe 
operating space for chemical 
pollution

The boundary can be defined in 
relation to the chemical footprint.

C

disturbance to 
biosphere integrity 
by plastic pollution

R F Ample evidence of physical and 
toxicological effects, including 
effects on species distribution and 
sensitivities.

A toxicity-based threshold would 
be set at PEC/PNEC = 1, with NE-
PB exceedances already being 
evident in several regions.C

a: F, feasibility; R, relevance; C, comprehensiveness.
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The trend in production volume of chemicals approximates the aggregate chemical burden on the Earth system. This 
metric could be a feasible control variable because production data are known by producers and are often reported to 
regulators for a large number of chemicals. (1,36) However, full data are often not publicly available, prompting calls for 
the release of such data from producers, trade organisations, and governments. (36) Chemicals could be binned 
according to production facility, feedstocks, or parent compounds, or by specific categories such as structural traits or 
uses, since it is likely to be most feasible to obtain highly aggregated data. Figure 2 shows the trend in global production 
capacity for a number of groups of novel entities, all showing high growth rates over the last couple of decades. These 
were chosen as representative chemicals where respective production/production capacity data were publicly available. 
Data are normalised due to different unit scales used when reporting. Individual graphs for each novel entity are given in 
the Supporting Information (SI). 

The trend in total chemical production captures 
potential planetary impacts at a high level of 
aggregation, making it comprehensive. A 
compelling reason to consider total chemical 
production as a control variable is that it exposes 
the vexing supply side issue of the “lock-in” 
effect, where economic, technical, political, and 
bureaucratic inertia maintain production despite 
imperatives for reduction. (39,40) Maintenance 
of production can cause a shift between 
chemicals with different types of functionality. 
For example, in the U.S., 77% of bromine was 
used to produce leaded gasoline in the 1960s. 
With the phase-out of leaded gasoline, bromine 
was used increasingly to produce brominated 
flame retardants, which then became the major 
use. (41) Similarly, silver production has shifted 
from declining use in analogue photoimaging to 
increased use as a biocide. Further, most 
production capacity is for multiple related 
chemicals and not a single entity. The lock-in 
effect means that a restriction in production and 
use of one set of chemicals leads to a shift in 
production of closely related chemicals (e.g., 
dielectric fluids shifting from PCBs to chlorinated 
paraffins, polycarbonate production shifting from 
bisphenol A to other bisphenols), and not to a reduction in total chemical production. Since chemicals differ widely in 
their effect potency, shifting production from one chemical to another can increase or decrease related effects on the 
Earth system or lead to other types of effects (burden shifting). 

The trend in total chemical production as a control variable may, at first glance, seem to have low relevance because 
links between chemical production and effect variables are not obvious and can be tenuous and difficult to assess: 
knowledge is lacking of the potential for adverse effects caused by the high number of chemicals, with limited data on 
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Figure 2. Current rising global trends of chemical industry production, expressed as 
the relative growth in some novel entities between 2000 and 2017 (for when 
comparable data are available): 1. Global production capacity for the chemical 
industry as a whole, plastics production and pesticide active ingredients (for which 
earliest data are from 2008); 2. Per capita production capacity in weight for key 
monomers and solvents: benzene, butadiene, ethylene, propylene, toluene, and 
xylene, 3: Global consumption of antibiotics. Data from the Global Chemicals 
Outlook II, (1) Geyer et al. 2017, (37) and Søgaard Jørgensen et al. (38) 
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chemical mixtures as found in the environment, produced intentionally and unintentionally. (42) Production volume can 
be argued to be directly linked to the immediate release of some chemicals (e.g., pesticides that are intentionally 
applied; down-the-drain chemicals in personal care products), but eventual release is more difficult to quantify (e.g., 
CFCs used as blowing agents in polystyrene insulation are released upon building renovation; dyes and other plastic 
additives are released as plastics age). Another aspect is that chemical production can account for inevitable global 
release since production is fed into highly complex, and poorly known global supply chains. A precautionary 
assumption of inevitable environmental release, however, increases the relevance of the trend in chemical production as 
a control variable. 

Trend in the production volume of plastics could be used as a control variable. Worldwide use of plastics has increased 
steadily since the 1950s, with global production increasing by 79% from 2000 to 2015. (37) Cumulative global 
production is projected to triple by 2050 to reach 33 billion tonnes. (44,45) The production of plastic, and consequently, 
plastic waste, is predicted to grow beyond the efficacy of the mitigating strategies to fight plastic pollution globally. (47) 
Plastic production data are globally available, enabling continuous monitoring of production volumes, see Figure 2 for 
the recent decade of increase. Thus, this is a feasible control variable. 

Plastic production is strongly associated with lock-in effects with raw materials, particularly fossil fuels. Four percent of 
fossil fuel is used for production of plastics materials, (48) and nearly 99% of feedstock for plastic materials come from 

fossil fuels. (49) Plastics are just one component in a 
complex industrial web that also uses fossil-fuel-based 
feedstocks to produce industrial fertilisers, solvents, and 
other chemicals. (36) Plastics are thus linked with the two 
core planetary boundaries of climate change and biosphere 
integrity, (3) making plastic production volume a strong 

proxy for human-caused changes and a comprehensive control variable. However, it is located far to the left on the 
impact pathway and does not account for environmental interactions and effects. Sustainable consumption patterns, 
reuse or recycling and the catching of mismanaged plastic waste can contribute to decoupling the amount of plastic 
produced from its potential planetary impacts. (50) Production volume, therefore, has low relevance as an indicator for 
disturbance of Holocene stability. However, whether these control measures, at a global scale, can occur at a rate 
commensurate with increasing production is highly debatable. (7,47) 

The share of chemicals with safety data or regulatory assessments is an option for the NE-PB control variable. Many 
countries have legislation and systems for assessment of hazard or risk for novel chemical substances, albeit with high 
variability in assessment requirements and capabilities between countries. Chemicals with safety data are those for 
which information on hazardous properties have been made available to regulators, users or the public. Chemicals with 
regulatory assessments refer to those whose hazardous properties or risks have been additionally assessed by regulators. 

The relevance of this control variable for the NE-PB is higher than production volumes because effects are better known, 
and possibly controlled. Many assessment components (i.e., toxicity, persistence, and long-range transport potential) 
have a direct bearing on Earth system effects. (13,51) Nevertheless, the relevance is constrained by the fact that no safety 
data requirement or regulatory assessment scheme can include all possible impacts of chemicals on Earth system 
processes. (52) Its relevance as an operational control variable depends on the quality of the safety data or regulatory 
assessments available. (53) 
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The feasibility of this control variable is limited. Many large chemical producers and users are not covered by effective 
chemicals management or occupational exposure legislation and/or chemical inventories. (35,52,54) In addition, 
frameworks governing chemicals on the market show high variability across jurisdictions, including the scope of 
regulatory assessments, ranging from compliance check (e.g., whether all required data fields are filled in), to plausibility 
check of reported safety data, to in-depth hazard and risk assessments of a chemical by combining reported and 
literature safety data. 

Using the EU REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) as an example, as of 
December 2020, ∼23 000 chemical substances were registered. (55) Among them, over 12 000 substances were 

registered as nonintermediates (intermediates have reduced safety data requirements) above 1 tonne per year 
production, of which about 2400 substances have been, or are being, assessed and addressed (403 with ongoing 

regulatory risk management, 786 with currently no 
further actions proposed, and 1181 with regulatory risk 
management under consideration). Thus, even in this 
small subset of the chemical universe, around 10 000 
substances (80%) are yet to be assessed after over 10 
years of the operation of REACH. A control variable 
based on safety data or regulatory assessments does not 

easily lend itself to the establishment of a comprehensive quantitative boundary because it does not translate to an 
analysis of the overall impacts of unsafe chemicals. 

A key aspect of the safety assessments of chemicals and of other NEs is the handling of the unknown NE-PB threats. The 
risks associated with the release of new entities from the technosphere to different environmental compartments are 
linked to possible effects over the full range of planetary boundaries. For example, novel entities could surprise us, for 
example, with effects on ocean chemistry affecting sea spray formation, (56,57) an important component of the climate 
system, (58) or with effects of antibiotic-resistant bacteria with global spread. (59) A NE-PB addition to risk and hazard 
assessments could capture chemicals that would not be highlighted in current assessment schemes. The planetary 
boundary threat screening approach suggested by MacLeod et al. (13) has already been tested on a set of currently 
unregulated chemicals found in the Arctic environment, (30) showing that some chemicals of emerging concern did not 
fit the well-established profiles for persistent organic pollutants (POPs) or very persistent/very accumulative chemicals, 
but scored high on the profiles of potential planetary boundary threats. 

Trend in Release of Novel Entities 

Moving further to the right in the impact pathway, the trends of emission or release of NEs to the environment could be a 
control variable. Millions of tonnes of NEs are released to the environment every year, including air emissions, water 
discharges, and solid and hazardous waste releases, (1) along entire supply chains of products and services. NEs are 
increasingly found in the most remote locations of the planet, for example, organophosphate esters in the Arctic Ocean, 
(60) and microplastic particles in the deep ocean (61) and high mountains. (62) Different groups of NEs can be targeted 
for this control variable. Here, we discuss two options, emissions of hazardous chemicals and release of plastic to the 
environment. 

Trend in emission quantities of hazardous chemicals scores high on the relevance criterion, since it captures the 
magnitude of the flow to the environment of chemicals that are potential NE-PB threats. Despite improvements of 
emissions and waste management in many jurisdictions, emissions of chemicals are projected to continue to increase 
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with consequent effects on ecosystems and human health; reduction targets to 2030 are, for instance, projected not to 
be met for the European Union with the current trends and developments. (63) 

The feasibility of this control variable hinges on the definition of hazardous, as well as the data availability on emissions 
of hazardous substances at a global scale across the life cycle of the chemical. One possible data source is the national 
and regional Pollutant Release and Transfer Registers (PRTR). (64) However, many countries lack these types of registers, 
the number of chemicals reported is limited, emission reports are often incomplete and uncertain, (65) and not all types 
of emissions are considered (e.g., mainly large point source emissions over certain volumes are captured (66)). Creating 

an emissions-based control variable with global coverage for 
just a small fraction of total chemicals would require numerous 
assumptions and would rely on extrapolation of data. 
Extrapolation is questionable when moving from countries with 
release inventories, to countries that lack them. (67) 
Nevertheless, if data are available, this approach allows for 

differentiating certain chemicals and chemical uses with high release potential. 

The comprehensiveness of this control variable is limited because the hazards are defined in limited scope in terms of 
ecosystem and human health, not in terms of potential biophysical thresholds and interactions with other PBs. The high 
aggregation of reported data also decreases the operational usefulness as different substances (e.g., arsine gas, different 
organic and inorganic arsenic compounds) within the same reported substance group (e.g., “arsenic and compounds”) 
will differ widely in their environmental fate and behaviour. The knowledge of toxicological properties is also limited to 
a small subsection of chemicals. (42) In spite of its shortcomings, this control variable carries the strength of representing 
realistic exposure, albeit for a limited number of chemicals and not necessarily over a chemical’s life cycle. 

For the trend in release quantities of plastics into the environment, Villarrubia-Gómez et al. (6) identified various 
pathways and mechanisms through which plastic pollution can influence biophysical thresholds and change Earth 
system processes, suggesting that this control variable has high potential relevance. Numerous studies have sought to 
quantify the global environmental release of plastics. (7,46,47,68) These data provide insights on release hotspots, but 
highlight data constraints that reduce the feasibility of this control variable. For example, countries with a less developed 

industrial base lack resources for monitoring plastic losses. 
Also, different forms of plastic have different release routes. 
Ryberg et al. (46) estimated that about 2.4% of plastics 
produced globally are lost to the environment, of which 
two-thirds are macroplastic (>5 mm) and a third is 
microplastic (∼1 nm to 5 mm in size). Most macroplastics 

are lost because of littering and poor waste management. (46) Some microplastics are lost to the environment in their 
manufactured form, such as nurdles, flakes, powder and microbeads. (69−71) This makes quantitative estimates 
uncertain and presents challenges for monitoring and assessment of effects. Methods are currently lacking for linking the 
steps in the impact pathway from releases of plastic to disturbance of the Earth system, (46,72) limiting the 
comprehensiveness of the release of plastics as a control variable. 

Unwanted Impact of Novel Entities on Earth System Processes 

Choosing a control variable further to the right in the impact pathway would mean looking at exposure and effects in 
terms of disturbance of Earth system processes, which increases its relevance. Feasibility would require narrowing the 
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scope of the control variable to particular data-rich chemicals and certain end points or specific subsystems of the Earth, 
thus also reducing comprehensiveness. The planetary boundary for this control variable would represent a “safe” level of 
chemical pollution. The goal is to protect biosphere integrity for a given environmental compartment (e.g., freshwater 
ecosystems) from the effects of the chemicals included in the assessment. 

In principle, the control variable can be defined for a given spatial scale, based on the compartment volume and its 
renewal rate. All chemical releases have the potential to occupy shares of the safe operating space within this boundary, 
in accordance with their release rates and their environmental persistence and toxicity potential. However, feasibility is 
constrained by the need to account for the large number of chemicals produced and released (with the data limitations 
discussed above), and estimating related effects is a challenge. For agricultural chemicals, quantitative estimates of the 
impacts may be derived from combining crop-specific field application data (e.g., from product labels) with crop 
production area statistics (e.g., FAOSTAT) as a proxy for treated area, emissions per unit mass applied and impacts per 
unit mass emitted into a given compartment (which could be estimated using mass balance models). For industrial 
chemicals, quantitative estimates of the impacts may be derived across the chemical’s life cycle from combining 
chemical production data and data on uses, emissions, environmental fate and transport (including persistence), and 
disposal. In other words, this requires information that is also needed for control variables early in the impact pathway, 
and additional information on ecological exposure and potency with respect to relevant Earth system effects. 

Since this control variable is close to the effect level of Earth system processes, robust boundary-setting is possible (and is 
the basis of critical loads approaches already in use), but it is not very comprehensive as compartment-based assessment 
may miss larger-scale dynamics. Reliable information for the various relevant aspects that describe more or less the 
entire impact pathway along the chemical’s life cycle is not available for most chemicals. However, the total cumulative 
chemical pressure on biosphere integrity is likely to be dominated by a limited number of chemicals (reflecting the 
quantities produced, used and released to the environment in combination with the inherent characteristics of the 
chemicals like persistence, mobility and toxicity). Posthuma and colleagues investigated the toxicity pressure from more 
than 12 000 chemicals in over 22 000 European water bodies and found that 15 compounds explained nearly 99.5% of 
the cumulative ecotoxicity pressure. (73) Walters et al. modelled the biomagnification potential of organic chemicals, 
thus contributing with another tool for screening. (74) While such studies are based on modelling with several 
limitations such as the interaction of novel entities, the approach could help to prioritise substance classes, regional 
patterns, or effect trends. To make the monitoring of the planetary boundary operational, chemicals that dominate 
cumulative impacts could be used as “indicator” chemicals. These would be identified in a prescreening process, 
combining estimates for production volume or capacity (e.g., market statistics) with environmental persistence (e.g., 
using the inverse of degradation half-life estimates as proxy) and impact potency (e.g., chronic ecotoxicity test data). To 
consider the transformation of various chemicals into persistent transformation products, total production data could be 
combined with metabolism rates for chemicals that contribute to the formation of such persistent “indicator” chemicals. 
And finally, the ratio of the cumulative chemical impact and the available space within the boundary for a given 
biosphere compartment could define whether the boundary is transgressed and to what extent, while allowing the main 
contributing chemicals to be identified. 

Several assumptions made in defining the boundary must be considered. First, there is an assumption about 
homogeneous mixing and exposure within the compartment over the considered time frame. This assumption is fair for 
air and perhaps for water, but less applicable to more complex compartments like soil and sediment, resulting in 
underestimation of exposures. Second, the aggregation of the occupation of operating space across chemicals assumes 
additivity without correcting for possible mixture effects, giving at most 1 order of magnitude uncertainty, (75) in 
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addition to at least another order of magnitude uncertainty related to intra- and interspecies differences for deriving 
effect estimates. (76) Other assumptions in deriving the cumulative impact are linked to nonspatialised emission and 
impact estimates ignoring spatial differences (e.g., in water chemistry, species richness, species vulnerability, degradation 
rates), and to estimation methods applied to cover data gaps in use/release patterns and persistence, yielding potentially 
2–3 orders of magnitude uncertainty. (77) 

Another effect-focused control variable could consider plastics’ disturbances to biosphere integrity, through physical and 
toxic effects of plastics and resulting changes in species distribution. While the perception of impacts of marine debris is 
larger than the accumulated evidence of ecological impacts, (78) reviews and meta-analyses of published experimental 
data show that microplastics do have negative effects in numerous species. (79−81) Impacts of microplastics on 
individual organisms and communities have been studied using numerous laboratory models, providing understanding 
of mechanisms of toxicity in marine organisms ranging from zooplankton to large vertebrates. (79,82) Although there are 
still mismatches between the concentrations and types of microplastics documented in the environment and those used 
in laboratory effect studies, (83) meta-analyses allow for some generalised understanding of the toxicity of microplastic 
particles. Newly developed mathematical models account for the large diversity in microplastic particles themselves, by 
applying extrapolation factors to account for underestimation in concentrations, and including species sensitivity 
distribution based on ecotoxicity data, allowing for more robust comparison of data sets. (84) Traditional risk assessment 
of chemical substances uses the ratio between predicted environmental concentration versus a predicted no effect 
concentration (PEC/PNEC), an approach that has been applied to microplastics exposure scenarios, (85) finding that 
0.17% of global ocean surface waters are at risk, and increasing to 1.62% by the end of the century. Additionally, the 
limitations inherent to commonly used sampling methods (i.e., focusing on larger sized-micro-particles), together with 
technical limitations in detecting smaller, nanoscale particles, are likely leading to an underestimation of the 
concentrations of both micro- and nanoplastics in the environment, (86) indicating that exposures and therefore risks are 
likely larger. Furthermore, the seafloor and sediments are thought to be the ultimate sink for plastics, (87,88) through 
uptake in marine ecosystems (89) (90) and changes in particle density and sinking rates due to biofouling, (91−93) so 
these niches and the organisms inhabiting them are predicted to suffer higher exposures. Quantifying these 
environmental concentrations, exposure routes and ecological fates (including additional niches) requires more data, 
and will be important for assessing exposure scenarios driving disturbances to biosphere integrity. Several different 
approaches could be applied to deal with data gaps. A toxicity-based threshold would be set at PEC/PNEC = 1, with NE-
PB exceedances already evident in several regions. However, additional deliberations would be necessary for 
considering changes in distribution of species or sensitivities, moving beyond toxicity to biodiversity and functionality.

Discussion and Conclusions 
Choice of Control Variable 

The character of the NE-PB differs from the other PBs since there is no prehuman background level or baseline of NEs 

(with few exceptions, like metals). The NE-PB is also distinct because of the number and diversity of NEs, the likelihood 
that these will increase in future, and the diverse impacts that they may cause. Thus, there is a need for control variables 
that are constructed differently compared to those for other PBs. As discussed above, operational control variables are 
necessary in order to inform action and gauge progress. 

We have presented a set of control variables that captures several of the complexities and characteristics of the NE-PB, 
ranging in feasibility, relevance and comprehensiveness. All have their strengths and weaknesses; none of them fulfil all 
the criteria on their own. We conclude that the nature of the planetary boundary for novel entities demands several 
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different control variables, and that jointly, our set of control variables form the basis of a feasible strategy to alert 
planetary risks and inform action. 

Are We Transgressing the Planetary Boundary for Novel Entities? 
A consistent trend-captured by our control variables is an increase over time in the production, diversity and global 

release of NEs. Despite major efforts in recent decades, 
safety assessment and subsequent regulations of chemical 
substances and other NEs, and the capacity of many 
countries to conduct these assessments and to enforce 
regulatory compliance, are not keeping up with the speed 
of introduction of new NEs. An ever-growing number of 
NEs are found in remote locations of the planet and the 
number of grossly contaminated locations is increasing 
despite remediation efforts. In addition, many distinct and 

partly interacting (e.g., synergistic) effects of NEs on Earth’s physical and ecological systems are being reported. In short, 
rapid growth in diversity and production volumes and releases outstrips society’s ability to assess, let alone manage NEs. 
Planetary burdens are already considerable. (1) Large differences in management capacity between countries of different 
income levels means that even when chemicals and waste management is improved in some jurisdictions, NEs will 
continue to be produced, used and disposed of with insufficient or nonexistent regulations and enforcement elsewhere, 
and thus NEs continue to be emitted into the environment. (94) This is a global concern, thus, there is a need for 
integrated and just cross-border solutions to address the problem with emissions of novel entities, such as plastic 
pollution. (95) 

We have adopted a weight-of-evidence approach to answer the question of whether we are transgressing the safe 
operating space of the NE-PB based on the set of control variables. Compelled by the increasing temporal trends seen in 
most of the control variables, we answer the question by comparing the rate of change in the amount of chemicals, 

including plastics, that are produced and released to the environment, relative 
to our capacity to conduct safety assessments and monitoring. We submit that 
the safe operating space of the NE-PB is exceeded when annual production 
and releases increase at a pace that outstrips the global capacity for 

assessment and monitoring. 

Based on the evidence presented here, we submit that we are now in a zone of exceedance of the Planetary Boundary 
for novel entities. Further, even if we were to stabilise or reduce production and releases, the effects due to our 
transgression of the NE-PB will still be a threat due to the persistence of many novel entities. Thus, we conclude that 
increases in production and releases of novel entities are not consistent with keeping humanity within the safe operating 
space, in the light of the global capacity for management. 

We invite the research community to continue work, using the impact pathway and understanding of the NE-PB 
presented here, to develop more operational control variables, more robust quantification of the NE-PB, and better-
defined limits for NE emissions. However, these continued research efforts need to go in parallel with urgent action to 
manage today’s NE-PB threats. Global data with improved spatiotemporal granularity can be gathered, but this activity 
should not delay immediate action, aiming to prevent harm earlier in the impact pathway, before the stage of Earth 
system effects. Measures to reduce releases and emissions of NEs to the environment are essential, including a higher 
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degree of circularity in product supply chains, material and 
product design, design for recycling, and safe and 
sustainable chemicals. (96,97) We must also address the 
issue of inequitable resource distribution and affluence that 
drives resource use and emissions (98) and hampers their 

effective regulation. 

Just as actions aimed at curbing climate change transitioned from concentration or discharge-based limits to fixed caps 
on greenhouse gas emissions, (99) calls for caps on plastic production and use have been made. (7) We suggest that the 
same approach is needed for all NEs, getting back within the safe operating space can only be achieved through globally 
capping emissions of NEs at a rate that is commensurate with the physical and chemical capacity of the Earth system. 

If we are to mitigate current damage and avoid future surprises from unknown NE-PB threats, a more preventive and 
precautionary hazard-based approach is needed to address novel entities. We are not naïve to the considerable 
challenge posed by reducing chemical and plastic releases in order to respect the NE-PB, especially with lock-in of 
chemical supply providing resistance against such changes. The recent call for an international science-policy body with 
oversight over chemicals and waste (100) may provide a forum for informing such actions that are needed to help 
safeguard the Earth system. 
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